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Integral Equation Solution to the Guidance
and Leakage Properties of Coupled

Dielectric Strip Waveguides

JEAN-FU KIANG, SAMI M. ALI, SENIOR MEMBER, IEEE, AND JIN AU KONG, FELLOW, IEEE

Mnfrmr —The guidance and leakageproperties of single and coupled

dielectric stip waveguides are analyzed using the dyadic Green’s function

and integral equation formulation. Gaterkin’s method is used to solve the

integral equation for the dispersion relation. The effects of the geometrical

and the electrical parameters on the dispersion relation are investigated. A

method to predict the occurrence of leakage is proposed. The properties of

the even and the odd leaky modes are also investigated. Results are

compared with previous analysis and shown to be in good agreement.

I. INTRODUCTION

T HE LEAKAGE phenomenon is important in the area

of millimeter-wave integrated circuits and integrated

optics. Theoretical analyses and experiments have been

performed to investigate this phenomenon [1]-[6]. The

leakage is due to the TE-TM coupling occurring at the

geometrical discontinuities, and the leaky power in the

form of a surface wave propagates in the background

medium. The leakage loss can be larger than the dielectric

loss for some low-loss materials and may cause crosstalk to

neighboring circuit components. On the other hand, the

leakage properties can be deliberately utilized in designing

directional couplers.

There are several methods used to analyze dielectric

strip waveguides. The approximate field matching method

[7] is used to analyze the rectangular dielectric waveguide.

This method considers only the fields in the regions at-

tached to the four sides of the guide cross section, and the

fields in the other regions are assumed negligible. The

transverse propagation constants are determined by solv-

ing the corresponding slab waveguide problems in two

transverse directions of the guide cross section separately.

This method is an approximate one, and can only predict

the real part of the propagation constant.
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The effective dielectric constant (EDC) method [8] has

been used to solve for the dispersion relations of dielectric

strip waveguides consisting of more than two constituent

regions in the cross section. This method is applied when

the width of each constituent region is large compared

with the thickness of the guiding layers, and the difference

of the effective dielectric constants between different con-

stituent regions is small. However, the EDC method ne-

glects the geometrical discontinuitim across the interfaces

between constituent regions and cannot be used to predict

the imaginary part of the propagation constant; thus the

leakage is not considered.

The mode-matching technique has been used to solve for

the propagation constant of dielectric strip waveguides [9].

Using this method, the leakage properties of the guiding

structure has been investigated [1]–[3], [10]. This technique

can be applied to guiding structures in which the modes of

the constituent regions can be determined. However, it

cannot be applied when the cross section of the guiding

structure is of arbitrary shape or has inhomogeneous di-

electric constant.

The finite element method [11], [12] and the finite differ-

ence method [13] have been used to solve for the disper-

sion characteristics of the dielectric waveguides. However,

the leakage effect was not investigated.

The integral equation method has been used to solve for

the dispersion relation of the rectangular dielectric wave-

guide [14]. This method incorporates the continuous spec-

trum, and hence the radiation loss is taken into account.

However, no results concerning practical single and cou-

pled dielectric strip waveguides were presented; and the

leakage phenomenon was not investigated.

In this paper, an integral equation formulation using the

dyadic Green’s function [15], [16] is derived to solve for the

dispersion relation of single and coupled dielectric strip

waveguides. A method to predict the leakage is presented,

and the leakage properties are investigated. In Section II,

the integral equation formulation for an arbitrary number

of inhomogeneous dielectric strips is derived; in Section
III, Galerkin’s method is used to obtain the matrix eigen-

value equations. Numerical results and discussions are

presented in Section IV.
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II. INTEGRAL EQUATION FORMULATION %

YL z

In Fig. 1, there are N inhomogeneous dielectric strips of

arbitrary cross section embedded in layer (1) of a planar

stratified medium. The whole structure is assumed to be

uniform along the propagation direction y. Assume that

the permittivity of the dielectric strips is c(r), then the

electric field in layer (f) can be represented by the dyadic

Green’s function and the equivalent polarization current in

the dielectric strips as

(o)

hi_,

hl

where J,q(r) = – ico8~(r)E(r), 8~(r) = ~(r)– El, and V is

the space occupie~ by the dielectric- strips. The dyadic

Green’s function ~,,( r, r’) can be represented in the spec-

tral domain as

Fll(r, r’) = & JJ* cfk,ei~’”(r~-r~ )~1,(k$, z, z’)
—m ●

●
z = —dn-l

f
hn en (n)

z = —dn

% (t)

Fig, 1. Geometrical configuration of N dielectric strips embedded in

AA

- ~d(r- r’) (2)
[

where

layer (/) o~ a planar stratified medium.

r,=.ik+}y

r,’ = ix’+ ~y’

and for z < z’, we have

%/(ks>z<>zL)

and ~,[ (k,, z, z’) is the Fourier transform of the principal

value part of G,,( r, r’) with respect to r,. The first term on

the right-hand side of (2) is the principal value part of the

dyadic Green’s function, and the second term is the source

dyadic.

For z > z’, the explicit form of ~,,(k,, z, z’) is given by

[15], [16]

here Z[ and zf are the local coordinates defined as Z[ = z +

dl, z; = z’ + dl, and
[;(k,z)e-’kZ’+ R\E,fi(- k,=)eikzz;]

(4)

where k, = Ik,l and k,, = k; – k; with Im(k,z) >0.



KIANG et u[.: INTEGRAL EQUATION SOLUTION

ln (3), R~~ and R~E, are the reflection coefficients of

the TM and the TE modes at the upper boundary of layer

(1), R~~ and R~E, are the reflection coefficients of the

TM and the TE modes at the lower boundary of layer (1).

They can be obtained recursively as

‘?(/-I) + Rfi(,_1)e2~k(/-,):hl-1

1+ R7(/-@i(/-l)e 21k([_1):h,_, ‘
a = (TE, TM)

(5a)

R;(/+1) + xn(/+l)e
2i~(/+l@+l

1 + w(t+l)%(/+l)e
2zk(/+uzk+l ‘

a!= (TE, TM)

(5b)

where R ;(,_ ~, and R?(~+~, are the Fresnel reflection coeffi-

cients of the a mode across the interfaces at z = – dl_ ~

and z = – d,, respectively. The explicit forms are

(6)

Substituting the dyadic Green’s function in (2) into (l),

we obtain

i36(r) iu2po
E(r)+ —i%,(r) = ~

/././
dV’

c, v

where the source dyadic contribution has been collected to

be the second term on the left-hand side. If the observation

point is outside of the source region, this term ,vanishes

automatically.

We assume that the pth eigenmode can be represent >d

as Ep( p ) e ‘q”, where q is the propagation constant along

the j>direction, and p =2X+ 2z. Equation (7) can thus be

reduced to

ik(fl)
EP(p)+ —-,z?p=(p) =

c,
2f&iP’MP?

, (m & ~kr(x-xr)=
x g,,(kX, q,z, z’)-Eo(p’) (8)

J–w

where S is the cross section of the guiding regions where

&(p) =c(f))– E*#o.

Consider two identical dielectric strips embedded in

layer (1) and located symmetrically with respect to x = O.

The separation s between the two strips is defined as the
shortest distance between them. For this symmetrical con-

figuration, both the even and the odd mode exist. We

denote the even (odd) mode as a mode with E= an even

(odd) function, and H: an odd (even) function of x. A

magnetic (electric) wall can be put at x = O without affect-

ing the field distributions.

195

The coupled integral equation can be written as

at(p)
E,(P)+ —lEpz(p)

E[

OEP(p’)

OEP(p’), p on S1 or S2 (9)

where S1 and S2 are the cross sections of the dielectric

strips. The source dyadic contribution has been collected

as the second term on the left-hand side of (9). On the

right-hand side of (9), the first (second) integral represents

the contribution by the equivalent polarization current in

the first (second) dielectric strip.

In the next section, Galerkin’s method is used to solve

the integral equations (8) and (9) for the dispersion rela-

tion q(u).

III. NUMERICAL SC)LUTION

For practical applications, the cross section of the di-

electric strips can be assumed to have a rectangular shape.

For a single dielectric strip of width w and thickness

tg = tI – fII as shown in Fig. 2, we divide the cross section

S into N by iVf cells of equal area. The length of each cell

is DX = w/N along the x direction, and D, = t ~/M along

with z direction. The center coordinate of the (n, m ) cell,

S.~, is denoted by (x., z.,) with 1< n < N and 1< m 6 M.

The electric field of the pth eigenmode on the cross section

S can thus be represented by a set of pulse basis functions

as

where

LPn(x) = :’

LR~(z) = :’

i f u!J$~n(x)R.,(z) (10)
n=l r?z=l

Xn – DX/2 C X C Xn + DX/2

elsewhere

Zm — Dz/2 < Z < Zm + Dz/2 (11)

elsewhere.
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Fig. 2. The dielectric strip waveguides analyzed in this paper: (a) Opti-

cal rib waveguide, (b) Strip dielectric guide, (c) Insulated image guide.

(d) Coupled strip dielectric guides. (e) Coupled insulated image guides.

where ~ap is the Kronecker delta function, which is equal

to 1 when a = ~ and is equal to O when a + /3, and c~~ is

the dielectric constant evaluated at (x., ZM).

Next, we choose the same set of basis functions as the

testing functions and apply Galerkin’s method to (12).

Taking the inner product of 6F’,(x)R~(z) with (12), we

obtain

NM

[

E

1
=A,, 1+*8== a“

e,
rq- (13)

Here a=x, y,z; l<r<Nandl <q< kf; A,gis the area

of S,,,; ~,,( kX) is the Fourier transform of P.(x) with

sin ( kXDX/2)
F,,(k,y) = ; J::;2dxe-’@’,,(x) = ~k (14)

x

and %~(k.., q) is the @ component of the dyadic

~’l~(kX, q) with

(15)

where 1~ is the domain of R ~( z ).

By utilizing the symmetry properties of }m(kX) and

t%~( k., q) with respect to k,, (13) can be further reduced
to

(16)

where

IcoskX(x. –x. )~:~(kx>T)>

(a, ~)=(x, x), (y, y),

1 (%8) =( X>Y), (X>Z),
(y, x), (z, x).

(17)

Equation (16) is a matrix equation of the form

E ff Zap UP=()rq, nm nm
(18)

p=x, y,zn=lm=l

where a = x, y? z; 1< r < N; and 1< q < M. The eigen-

value v can thus be obtained by setting the determinant of

the Z matrix in (18) to zero. Hence we have

det[Z(u, q)] =0. (19)

To solve the integral equation (9) for two symmetrical

dielectric strip waveguides, we choose the same set of pulse

basis functions as in (11) to represent the electric field on

the cross section SI as

By symmetry, the electric field on the cross section S, can
be represented as

p on S2 (21)

where the subscript ( in I! designates the even mode

when < = e and the odd mode when ( = o. The definition

of If is
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Fig. 3. The propagation constant for the E/l mode on the opticaf rib waveguide: ~ = 30.0 GHz, tI = 0.8A0, tII = 0.7L0,

<, = 2.8224c0, e, = 2.19046., CC= co. (a) The reaf part; (b) the imagina.g part: (a) — ours: –––– Ogusu’s.

For an even (odd) mode, a magnetic (electric) wall can be

put at x = O without affecting the field distributions.

Substituting (20) and (21) into (9) for p on Sl, we have

“J
co A

dk~e’kr(x-x’)%(k~>T?, Z, z’) oP) p on S1.
—m

(23)

Due to the symmetry of the structure, only the electric

fields on S1 need to be tested when applying Galerkin’s

method. Taking the inner product of 6P,(x )I? ~( z) with

(23) and utilizing the symmetry properties with respect to

kX, we have

NM

-./
‘dkx }r(kx)~,,(kx)w;f$~ (kx, q)

o

(24)

where a=x, y,z; l<r<N and lz;q<~,and

JJ&f$$i?(kx, ~)

{

[coskY(x,- xn)+Ifcosk X(x,+ x.)]& $(kX, q),

= (~, P)=(x>x)3(Y, Y)>(J~, z), (z, Y)$(z>z)

i[sinkX(x, –x. )+l~sin kX(x, +Xn)]&~(k~, q),

(% B)=(X2Y), (X, Z), (Y, X), (Z, X).

(25)

Equation (24) is a matrix equation, and the eigenvalue q

can be obtained by setting the determinant of the matrix

to zero.

IV. l&SULTS AND DISCUSSIONS

In this section, three different dielectric strip waveguides

are investigated. They are the optical rib waveguide, the

strip dielectric guide, and the insulated image guide as

shown in Fig. 2. The central region of each structure is

denoted as region I, and the background region is denoted

as region II.

In Fig. 3, we present the results for an optical rib

waveguide. In this case, the rib portion in region I is

chosen as the cross section of the strip which is embedded

in the background medium of a slab waveguide. We divide
the cross section of the strip into two segments along the z

direction, and eight to 24 segments along the x direction

depending on the width of the rib. Nfuller’s method [17] is

used to search for the roots of the cleterminantal equation

(19) with the initial guess provided by the EDC method

[8]. The CPU time spent to calculate the propagation
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constant at each frequency is about 7 min on a DEC VAX

station 3500.

The imaginary part of the propagation constant for the

TM-like E;l mode is shown as a function of the rib width.

The leakage and cancellation phenomena are observed and

compared with those in [1]–[3]. The results calculated by

using our method show good agreement with those ob-

tained by the mode-matching technique [3]. Here the effec-

tive refractive index is defined as

~r
nc~~=—

k.

where q. is the real part of the propagation constant n-

The wave modes of the dielectric waveguides are hybrid

modes in nature. In our notation, they are called E~~

modes (TE-like) when the TEZ portion is larger than the

TM, portion and are called E;q modes (TM-like) when

the TEZ portion is less than the TM, portion.

In Fig. 4(a), we present the effective refractive index ne~~

for the E:l and E;l modes as a function of the thickness

in region I of an optical rib waveguide with the rib width

as parameter. The effective refractive indexes for the sur-

face wave modes on region I and region II as if they were

of infinite extent are also displayed in the figure.

The effective refractive index of the TE-like mode Efi is

greater than that of the TM~l mode. Therefore, the kX for

the TM~l mode is imaginary because k; = (n? – n ~ff)k~;

and no surface wave modes are excited to incur leakage.

Here n, is the effective refractive index of the TM~I mode.

Meanwhile, the effective refractive index of the TM-like

mode E;l is smaller than that of the TELI mode for certain

values of tI. In that case, q is complex with a positive

imaginary part, and k, is complex with a negative imagi-

nary part because the separation relation for the TE~I

mode implies that q,q, = – kX.kXZ. Here q = q, + in, and

k,= kv, + ikv, with q,, q,, and kX. positive. Usually, qZ is
much less than q,, and hence IkXi I is much less than kX..

The presence of the real part of kX implies that the

excited surface wave mode propagates away from the

guiding strip with an exiting angle f3= sin-1 (kX,/(n,kO))

with respect to the y axis, as was observed in [2].

The negative imaginary part of kX implies that the

magnitude of the exiting surface wave mode increases in

the x direction. This phenomenon can be explained as

follows: as the hybrid leaky mode is propagating along the

y direction, surface waves are excited in the background

medium, which propagate away from the guiding structure

with an exiting angle (3.The magnitude of the hybrid mode

decreases along the y direction due to leakage; hence the

magnitude of the excited surface wave also decreases along

the y direction. If we observe the field along the x direc-

tion (y = const), the surface wave at lmge value of x is

excited from the propagating wave along the guide having

larger magnitude than that which excites the surface wave

at the small value of x.

To predict the occurrence of leakage, let us consider the

case of w = 2A ~ in Fig. 4. When the thickness tl is smaller

than that at point T, the leakage occurs; when the thick-

~,,~
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-4.5
0

<

: -5.0
+

S’
- -5.5

-6.0

-6.5

-7.0 I

0.70 0.75 0.80 0.85 0.90 0.95 1.00

tl(cm)

(b)

Fig. 4. (a) The effective refractive index for the modes on the optlcaf
rib waveguide: f = 30.0@Iz, tII = 0.7~o, ~f = 2.8224 <0. c,, = 2.1904c0,

~ = (o. @) The imaginqpart of the propagation const~t for the
.

modes on the opticaf rib wavegnide: ~ = 30.0 GHz, t~~= 0.7&, <J =
2.8224 {., <$ = 2.19046., f, = co.

ness is larger than that at point T, the leakage vanishes.

This figure not only indicates which modes leak and which

do not; it also shows the range of geometrical and electri-

cal parameters governing this phenomenon. Note that the

leakage with w = 6X0 is smaller than that with w = 2A0

and larger than that with w = 4A ~. This is consistent with

the results in Fig. 3.

In Fig. 5, we present the propagation constants for the

E:l and E:l modes on an insulated image guide. The

effective refractive indexes of the surface wave modes on
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Fig. 5. (a) The effective refractive index for the modes on the insulated

image guide: ~ = 30.0 GHz, rlI = 0.38ao, (g,= 2.62(o, ~f = 2.55(o, ~, =
co. (b) The imagina~ part of the propagation constant for the modes
on the insulated image guide: ~ = 30.0 Gfi, tn = 0.38~0, (g = 2.6~~0,
<f = 2.55c(), c< = co.

region I and region II are also displayed for reference. For

the E:l mode, no surface waves are excited in region II.

On the other hand, for the Efl mode, TM~I mode is

excited to incur leakage.

From Figs. 4 and 5, it is clear that if the lowest order

TE-like mode leaks, the lowest order TM-like mode does

not leak; and vice versa.

In Fig. 6, we present the dispersion relation for three

TM-like modes: E{l, E{z, ad Ejz On a strip dielectric
guide. The dispersion relations of the first five slab wave-

-3.0 L——L_L—.
0 2 4 6 8 10 12 14

k. (cm)-l

(b)

Fig. 6. (a) The effective refractive index for the TM-like modes on the
strip dielectric guide: tl= 0.82 cm, 111==0.5 cm, ~ = 0.65 cm, c,?=

2.55c0, Cf = 2.62c0, CC= %. (b) The imaginary part of the propagation
constant for the TM-fike modes on the si rip dielectric guide: rI = 0.82
cm, tlI = 0.5 cm, w = 0.65 cm, Eg = 2.55c,~, c, = 2.62<., <, = co.

guide modes on region II are also displayed for reference.

The effective refractive index of the E:l mode is larger

than that of any slab waveguide mode; hence no leakage is

expected. For the E& and the E~2 modes, both the TM#

and TE~I surface wave modes are excited, and leakage is

observed as the imaginary part of the propagation constant

shown in Fig. 6(b).

In Fig. 7, we present the dispersion relation for two

TE-like modes: the Efi and the E:2 modes on a strip

dielectric guide. The dispersion relations of the first five
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Fig. 7. (a) The effective refractive index for the TE-like modes on the

strip dielectric guide: CI= 0.82 cm, 111= 0.5 cm, w = 0.65 cm, 6$ =
2.55< (), c, = 2.62q), CC= co. (b) The imaginary part of the propagation
constant for the TE-like modes on the strip dielectric guide: rI = 0.82
cm, rlI = 0.5 cm, w = 0.65 cm, Cg= 2.55c0, Cj = 2.62c0, CC= co.

slab waveguide modes on region II are also displayed for

reference. The effective refractive index of the E: mode is

smaller than that of the TM~I mode; hence the E;l mode

is a leaky mode. For the Ef2 mode, both the TM~I and the

TE~l mode are excited, and leakage is observed as the

imaginary part of the propagation constant shown in Fig.

7(b). Thus, the E: mode couples to the TM~l mode, which

has an opposite polarization as was observed by Peng and

Oilner [1], [2]. On the other hand, the E/2, the Ef2, and the

1586

1

even mode

1584

15821-

1576 -

1574 -

1572 -

1570E -3 I I I 1 I 1 I

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1..6

s (cm)

Fig. 8. The effective refractive index for the l?~l modes on two ide nticaf

strip dielectric gtrides: ~ = 38.67 GHz, tI = 0.82 cm, tI1 = 0.! cm,

w = 0.65 cm, cg = 2.556., c, = 2.62(., t, = co.

E& mode couple to both the TM~I and the TE~I mocle in

the background medium. Hence, as the lowest order leaky

mode couples to the surface wave mode of opposite polar-

ization, the higher order leaky modes may couple to the

surface wave modes of both polarizations. This was also

observed by Ogusu [3]. The same conclusions can also be

drawn for the insulated image guide.

From Figs. 6 and 7, it is observed that the E:l is a

nonleaky mode, but the E; is a leaky mode. This vel ifies

the conclusions we drew from Figs. 4 and 5 that if the

lowest TE-like (TM-like) mode is leaky, the lowest TM.like

(TE-like) mode is nonleaky.

Next, we consider the coupling of two symmetrical

dielectric strip waveguides. In Fig. 8, we show the effective

refractive index of the E:l mode for two identical $trip

dielectric guides as a function of separation s. The e Ffec-

tive refractive index of the even and odd modes tends to be

degenerate as the separation increases, and no leaka~~e is

observed. Since the separation is large, the field distl ibu-

tion on each strip is the same as if the other strip were

absent. For the corresponding single-strip case shown in
Fig. 6, the E~l mode is a nonleaky mode, which im dies

that no surface wave modes are excited in the background

region. As the separation is reduced, there are stil I no

surface wave modes excited.

In Fig. 9, we present the propagation constant of tht: E:

mode for two symmetrical strip dielectric guides. The Efl

mode on the corresponding single-strip dielectric guidt~ is a

leaky mode, as shown in Fig. 7. The effective refra,;tive

index of the even and odd modes tends to be degenerate as

the separation increases, but a small oscillatory behavi m is

observed when the separation s is larger than 2.6 cm! As

for the imaginary part of the propagation constant, v~hen
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Fig. 9. (a) The effective refractive index for the Efi modes on two
identical strip dielectric guides: ~=40.O GHz, tl =0.82 cm, tII =0.5
cm, w= O.65 cm, c,~=2.55c0, c, =2.62c0, EC=cO. (b) The imaginary
part of the propagation constant for the E~l modeson two identicaf
strip dielectric guides: ~=40.O GHz, tI =0.82 cm, tII =0.5 cm, w=
0.65 cm, CX=2.55C(), c,=2.62co, c<=co.

the even mode has a maximum, the odd mode has a null;

and vice versa.

In Fig. 10, the propagation constant of the E{z mode is

presented. The effective refractive index of both the even

and the odd mode displays an oscillatory behavior. Where

the even mode has a maximum, the odd mode has a

minimum; the vice versa.
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Fig. 10. (a) The effective refractive index for the E~2 modes on two
identical strip dielectric guides: ~ = 38.67 GHz, tI = 0.82 cm, tII = 0.5

cm, w = 0.65 cm. Cg= 2.55c0, Cf = 2 62eo. c, = co. (b) The imaginary
part of the propagation constant for the E~2 modes on two identical
strip dielectric guides: ~ = 38.67 GHz, tI = 0.82 cm. .tII = 0,5 cm,
w = 0.65 cm, <8 = 2.55c0, Cf = 2.62c< = Co.

This behavior can be qualitatively explained by the

following approximate formula for the propagation con-

stants derived from the coupled wawe equations [18]:

where q is the propagation constant of the wave mode in
the absence of the other waveguide; q + are the propaga-—
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Fig. 11 The effective refractive index for the E~l modes on two identi-
cal insulated image guides: ~ = 30.23 GHz, tI = 0.83 cm, fII = 0.38 cm,
w =1.5 cm, <q = 2.62( (1, c, = 2.55C0, (, =Co.

tion constants of the coupled modes when the two wave-

guides are both present; E, is the electric field due to

waveguide i in the absence of the other guide, where

i =1,2; and P is the power guided by waveguide 1 alone.

For the nonleaky modes, the electric fields decay away

from the central regions. Hence the overlapping integral

decreases as the separation increases. For the leaky modes,

the electric fields outside of the central regions are the

superposition of an evanescent wave and the propagating

surface waves. If the propagating wave portion is strong

enough, it will make the overlapping integral change sign

when the separation is changed; and the overlapping inte-

gral sustains even at large separation.

For two symmetrical dielectric strip guides, the overall

leakage is due to the excitation of the surface wave modes

in the background medium by both guides. At certain

separation when the even mode has a maximum leakage, it

implies that the surface wave modes excited by each wave-

guide add in phase. For the odd mode at the same separa-

tion, these surface wave modes add out of phase due to the

definition of the even and odd modes; hence the cancella-

tion effect is observed as a null in the imaginary part of

the propagation constant. Similarly, if the odd mode has a

maximum leakage at a certain separation, the even mode

shows a cancellation effect.

The small oscillation in Fig. 9(a), however, does not

contradict the aforementioned explanation because the

leakage loss is almost two orders smaller than that of the

E:. mode; hence the contribution of the propagating sur-

face wave to the overlapping integral is negligibly small.

In Fig. 11, we show the effective refractive index for the

E:l modes on two identical insulated image guides. The
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Fig. 12. (a) The effective refractive index for the E~l modes on two

identical insulated image guides: j’= 40.0 GHz, tI = 0.82 cm, [11 = O 5
cm, w = 0.65 cm, cg,= 2.62(., ~, = 2.55c0, c, = co. (b) The imaginary

part of the propagation constant for the E;, modes on two identicat

insulated image guides: ~ = 40.0 GHz, tI = O 82 cm, rII = 0.5 cm,

w = 0.65 cm, cg = 2.626., C, = 2.55c0, f, = (O.

even and odd modes tend to be degenerate when the

separation is increased. The E:l modes are nonleaky modes

as the corresponding E:l mode on the single insulated

image guide. In Fig. 12, we show the propagation constant

of the E~l modes on two identical insulated image guides.

The effective refractive index of the even and odd modes

tends to be degenerate, and the imaginary part displays

maxima and nulls alternatively.
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V. CONCLUSIONS

The guidance and leakage properties of single and cou-

pled dielectric strip waveguides are analyzed using a dyadic

Green’s function and integral equation formulation.

Galerkin’s method is used to solve the integral equation

for the dispersion relation. A method to predict the occur-

rence of leakage is proposed. The leakage occurs when the

effective refractive index is smaller than those of the

surface wave modes in the background medium. For the

coupled dielectric strip waveguides, the dispersion rela-

tions of the even and odd leaky modes are investigated.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Flf3FERENCES

S. T. Peng and A. A. Oliner, “Guidance and leakage properties of a
class of open dielectric waveguides: Part I— Mathematical formula-
tions,” IEEE Trans. Microwave Theory Tech., vol. MTT-29, pp.
843-855, Sept. 1981.

A. A. Oliner, S. T. Peng, T, I. Hsu, and A. Sanchez, “Guidance and
leakage properties of a class of open dielectric waveguides: Part II

—New physical effects;’ IEEE Trans. Microwave Theory Tech.,
vol. MTT-29, pp. 855–869, Sept. 1981.

K. Ogusu, “Optical strip waveguide: A detailed analysis including

leaky modes,” J. Opt. Sot. Amer., vol. 73, no. 3, pp. 353-357, Mar,

1983.

K. Ogusu, S. Kawakami, and S. Nishida, “Optical strip waveguide:

An analysis,” App/, Opt., vol. 18, no. 6, pp. 908-914, Mar, 1979.

K. Ogusu, S. Kawakami, and S. Nishida, “ Opticaf strip waveguide:

An analysis; a correction;’ Appl. Opt., vol. 18, no. 22, p. 3725, Nov.
1979.

K. Ogusu and I. Tanaka, ” Optical strip waveguide: An experiment,”
Appl. Opl., vol. 19, no. 19, pp. 3322-3325, Oct. 1980. .

E. A. J. Marcatili, “Dielectric rectangular waveguide and direc-

tional coupler for integrated optics,” Bell Syst. Tech. J., vol. 48, pp.
2071-2102, Sept. 1969.

W. V. McLevige, T. Itoh, and R. Mittra, “New waveguide struc-

tures for millimeter-wave and optical integrated circuits,” IEEE

Trans. Microwave Theory Tech., vol. MTT-23, pp. 788-794, Oct.

1975.

R. Mittra, Y. L. Hou, and V. Jamnejad, “Analysis of open dielec-

tric waveguides using mode-matching technique and variational

methods,” IEEE Trans. Microwave Theoiy Tech., vol. MTT-28, pp.
36–43, Jan. 1980.

M. Tsuji, S. Suhara, H. Shigesawa, and K. Taiyama, “ Submillime-
ter guided-wave experiments with dielectric rib waveguides,” IEEE
Trans. Microwave Theory Tech., vol. MTT-29, pp. 547–552, June
1981,

K. Hayata, M. Koshiba, M. Eguchi, and M. Suzuki, “Vectorial

finite-element method without any spurious solutions for dielectric

waveguiding problems using transverse magnetic-field component,”

IEEE Trans. Microwaue ~heory Tech., vol. MTT-34,pp. 1120-1124,

Nov. 1986.

K. Hayata, M. Eguchi, and M. Koshiba, “Self-consistent finite/
infinite element scheme for unbounded guided wave problems,”

IEEE Trans. Microwave Theory Tech., vol. 36, pp. 614–616, Mar.
1988.

K. Bierwirth, N. Schulz, and F. Arndt, “Finite-difference analysis
of rectangular dielectric waveguide structures,” IEEE Trans. Mi-
crowaue Theoiy Tech., vol. MTT-34, pp. 1104–1114, Nov. 1986.

J. S. Bagby, D. P. Nyquist, and B. C. Drachman, “Integraf formula-

tion for analysis of integrated dielectric waveguides,” IEEE Trans.
Micrcnvaoe Theory Tech., vol. MTT-33, pp. 906-915, Oct. 1985.
J. A. Kong, Electromagnetic Wave Theoiy. New York: Wiley,
1986.

S. M. Ali, T. M. Habashy, and J. A. Kong, “Dyadic Green’s
functions for multilayered uniaxiafly anisotropic media; J. Elec-

tromagn. Waves App[., submitted for publication.

203

[17] A. Ralston, A First Course in Numerical Analysis. New York:

McGraw-Hill, 1965,

[18] D. Marcuse, Light Transmission Optics. New York: Van Nos-

trand Reinhold, 1972.

Jean-Fu Kiang was born in Taipei, Taiwan,

R. O. C., and February 2, 1957. He received the
B.S. ‘and M.S. degrees in electrical engineering

from National Taiwan University in 1979 and
1981, respectively. In 1983, he became a research

and teaching assistant in the Department of

Electrical Engineering and Computer Science at

M. I.T., where he obtained the M.S. and Ph.D.

degrees in 1985 and March 1989, respectively.

Since then, he has been working at IBM Re-

search, Yorktown Heights, N.Y. His research
interests are electromagnetic theory and applications and numerical anaf-
ysis.

Dr. Kiang is a member of Sigma Xi.

*

Sami M. Ali (M79-SM86) was born in Egypt
on December 7, 1938. He received the B.S. de-
gree from the Military Technical College, Cairo,
Egypt, in 1965, and the Ph.D. degree from the

Technical University of Prague, Prague,
Czechoslovakia, in 1975, both in electrical engi-

neering.

He joined the Electrical Engineering Depart-

ment, Militmy Technical College, Cairo, in 1975.
In 1985, he became a Professor and head of the

Basic Electrical Enzineenrw De~artment there.
From 1981 to 1982 he was a visiting scientis~ at the ~ese~rch Laboratory

of Electronics, M.I.T. Cambridge, MA. Since 1987, he has again been a
visiting scientist there. His current research interests deaf with microwave

integrated circuits and microstrip antenna applications.

-.

o~ment. His research

JM Au Kong is Professor of Electncaf Engineer-
ing and Chairman of Area IV and Energy and
Electromagnetic Systems in the Department of

EIectricaJ Engineering and Computer Science at

the Massachusetts Institute of Technology in
Cambridge, Massachusetts. From 1977 to 1980
he served the United Nations as a High-Level
Consultant to the Under-Secretary-General on
science and technology, and as an InterregionaJ
Advisor on remote sensing technology for the

Department of Technical Cooperation for Devel-
interest is in the area of electromametic wave

theory and applications.
Dr. Kong is the Editor for the Wiley series on remote sensing, the

Editor-in-Chief of the Journal of Electromagnetic Waves and Applications
(JE WA), and the Chief Editor for the Elsevier book series on Progress in
Electromagnetic Research (PIER).


