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Integral Equation Solution to the Guidance
and Leakage Properties of Coupled
Dielectric Strip Waveguides

JEAN-FU KIANG, SAMI M. ALI, SENIOR MEMBER, IEEE, AND JIN AU KONG, FELLOW, IEEE

Abstract —The guidance and leakage properties of single and coupled
dielectric strip waveguides are analyzed using the dyadic Green’s function
and integral equation formulation. Galerkin’s method is used to solve the
integral equation for the dispersion relation. The effects of the geometrical
and the electrical parameters on the dispersion relation are investigated. A
method to predict the occurrence of leakage is proposed. The properties of
the even and the odd leaky modes are also investigated. Results are
compared with previous analysis and shown to be in good agreement.

I. INTRODUCTION

HE LEAKAGE phenomenon is important in the area

of millimeter-wave integrated circuits and integrated
optics. Theoretical analyses and experiments have been
performed to investigate this phenomenon [1]-[6]. The
leakage is due to the TE-TM coupling occurring at the
geometrical discontinuities, and the leaky power in the
form of a surface wave propagates in the background
medium. The leakage loss can be larger than the dielectric
loss for some low-loss materials and may cause crosstalk to
neighboring circuit components. On the other hand, the
leakage properties can be deliberately utilized in designing
directional couplers.

There are several methods used to analyze dielectric
strip waveguides. The approximate ficld matching method
[7] is used to analyze the rectangular dielectric waveguide.
This method considers only the fields in the regions at-
tached to the four sides of the guide cross section, and the
fields in the other regions are assumed negligible. The
transverse propagation constants are determined by solv-
ing the corresponding slab waveguide problems in two
transverse directions of the guide cross section separately.
This method is an approximate one, and can only predict
the real part of the propagation constant.
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The effective dielectric constant (EDC) method [8] has
been used to solve for the dispersion relations of dielectric
strip waveguides consisting of more than two constituent
regions in the cross section. This method is applied when
the width of each conmstituent region is large compared
with the thickness of the guiding layers, and the difference
of the effective dielectric constants between different con-
stituent regions is small. However, the EDC method ne-
glects the geometrical discontinuities across the interfaces
between constituent regions and cannot be used to predict
the imaginary part of the propagation constant; thus the
leakage is not considered.

The mode-matching technique has been used to solve for
the propagation constant of dielectric strip waveguides [9].
Using this method, the leakage properties of the guiding
structure has been investigated [1]-[3], [10]. This technique
can be applied to guiding structures in which the modes of
the constituent regions can be determined. However, it
cannot be applied when the cross section of the guiding
structure is of arbitrary shape or has inhomogeneous di-
electric constant.

The finite element method [11], [12] and the finite differ-
ence method [13] have been used to solve for the disper-
sion characteristics of the dielectric waveguides. However,
the leakage effect was not investigated.

The integral equation method has been used to solve for
the dispersion relation of the rectangular dielectric wave-
guide [14]. This method incorporates the continuous spec-
trum, and hence the radiation loss is taken into account.
However, no results concerning practical single and cou-
pled dielectric strip waveguides were presented; and the
leakage phenomenon was not investigated.

In this paper, an integral equation formulation using the
dyadic Green’s function [15], [16] is derived to solve for the
dispersion relation of single and coupled dielectric strip
waveguides. A method to predict the leakage is presented,
and the leakage properties are investigated. In Section II,
the integral equation formulation for an arbitrary number
of inhomogeneous dielectric strips is derived; in Section
1, Galerkin’s method is used to obtain the matrix eigen-
value equations. Numerical results and discussions are
presented in Section IV.
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II. INTEGRAL EQUATION FORMULATION

In Fig. 1, there are N inhomogeneous dielectric strips of
arbitrary cross section embedded in layer (/) of a planar
stratified medium. The whole structure is assumed to be
uniform along the propagation direction y. Assume that
the permittivity of the dielectric strips is e(r), then the
electric field in layer () can be represented by the dyadic
Green’s function and the equivalent polarization current in
the dielectric strips as

E(r) =i‘*’l‘of/deV/C:;u("a"I)'Jeq("')

‘:wzﬂoffdeV'gll(r,r)'ﬁe(r’)E(r’) (1)

where J, (r) = — iwde(r)E(r), de(r) =e(r)—¢, and V is
the space occupied by the dielectric-strips. The dyadic
Green’s function G, (r, r’) can be represented in the spec-
tral domain as

= i 0 = ,
Gll(r7 r/)z"é?f—/; dkselks e "S)gll(ks’z’z)

238 ) 5
e (r—r) (2)

where

k,= 3k, + jk,

K= XX+ Py

r=3Xx"+ 3y’
and g,(k,, z, z’) is the Fourier transform of the principal
value part of G,(r, r’) with respect to r,. The first term on
the right-hand side of (2) is the principal value part of the
dyadic Green’s function, and the second term is the source
dyadic.

For z > 2/, the explicit form of §,,(ks, z,z') is given by
[15], [16]
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Fig. 1. Geometrical configuration of N dielectric strips embedded in

layer (/) of a planar stratified medium.

and for z < z’, we have
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here z, and z/ are the local coordinates defined as z, =z +
d,, z/ =z'+d, and
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where k = |k | and k,, = k? — k2 with Im(k,,)>0.
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In (3), R™ and R'E are the reflection coefficients of
the TM and the TE modes at the upper boundary of layer
(1), R™ and RTE, are the reflection coefficients of the
TM and the TE modes at the lower boundary of layer (/).

They can be obtained recursively as

R‘[X([ 1 + R‘L(lfl)e%k(hl):hl—l

R
urT a ik 1y by ?
1+Rl(l I)RU(I He Hu=-1:i-1

a=(TE, TM)

(5a)

a a 2ik N
Rii1y + R ape o

a 21k h
L+ Ry ) RE (epye et

a
ni=
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where R ,_,, and Rj,, are the Fresnel reflection coeffi-

cients of the a« mode across the interfaces at z= —d,_;
and z = — d,, respectively. The explicit forms are
RTE ki.=kgin: RN, = €1k~ €k ).
({1 +1) B (! + .
k4 kg €tk €k,

(6)

Substituting the dyadic Green’s function in (2) into (1),
we obtain

-5 o

{

E(r)+

[ et 8B (k2. 2)-E() ()

where the source dyadic contribution has been collected to
be the second term on the left-hand side. If the observation
point is outside of the source region, this term vanishes
automatically.

We assume that the pth eigenmode can be representzd
as E,(p)e™, where 7 is the propagatlon constant along
the y dlrectlon and p = £x + Zz. Equation (7) can thus be
reduced to

E (p)+

(p) (o)— “Offdo’ée(o)

*® = ’ ’
'f‘ dkxe”"r(x_x)g”(kwn,z,z)-Ep(p) (8)

where S is the cross section of the guiding regions where
de(p)=¢e(p)— ¢ #0.

Consider two identical dielectric strips embedded in
layer (/) and located symmetrically with respect to x = 0.
The separation s between the two strips is defined as the
shortest distance between them. For this symmetrical con-
figuration, both the even and the odd mode exist. We
denote the even (odd) mode as a mode with E, an even
(odd) function, and H, an odd (even) function of x. A
magnetic (electric) wall can be put at x =0 without affect-
ing the field distributions.
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The coupled integral equation can be written as

(p)

E,(p)+ E,.(p)
= (o) [ dic,e g, (k. 2. 2)
‘E,(p')
otk “)g,,(kx,n,z,- )
'Ep(P/)a ponS;ors, 9)

where S; and S, are the cross sections of the dielectric
strips. The source dyadic contribution has been collected
as the second term on the left-hand side of (9). On the
right-hand side of (9), the first (second) integral represents
the contribution by the equivalent polarization current in
the first (second) dielectric strip.

In the next section, Galerkin’s method is used to solve
the integral equations (8) and (9) for the dispersion rela-
tion p(w).

III.

For practical applications, the cross section of the di-
electric strips can be assumed to have a rectangular shape.
For a single dielectric strip of width w and thickness
t,=t;—ty as shown in Fig. 2, we divide the cross section
S into N by M cells of equal area. The length of each cell
is D,=w/N along the x direction, and D, =1,/M along
with z direction. The center coordinate of the (n, m) cell,
S, is denoted by (x,, z,,) with 1< n < Nand 1< m< M.
The electric field of the pth eigenmode on the cross section
S can thus be represented by a set of pulse basis functions
as

NUMERICAL SOLUTION

N M
E(o)= Y X Y ar.BP(x)R,(z) (10)
B=x,y,zn=1m=1
where
- xx S +
P)={b B D/2sx<n D
0, elsewhere
— 2
Rm(z)={1’ D /2<z<z,+D,/ (11)
0, elsewhere.

Substituting (10) into (8), we have

DD
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—€
nm /
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-/ /S dp'P,(x")R,,(2)
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(12)
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Fig. 2. The dielectric strip waveguides analyzed in this paper: (a) Opti-
cal rib waveguide. (b) Strip dielectric guide, (c) Insulated image guide.
(d) Coupled strip dielectric guides. (¢) Coupled insulated image guides.

where 8, is the Kronecker delta function, which is equal
to 1 when o= and is equal to 0 when a+ 8, and ¢, is
the dielectric constant evaluated at (x,, z,,).

Next, we choose the same set of basis functions as the
testing functions and apply Galerkin’s method to (12).
Taking the inner product of &P.(x)R (z) with (12), we
obtain

'”i‘*’z.uo Z Z Z

B=x,yv.zn=1m=
R

.jw dk o' <P (= & ) B, (k) g2 (ke )

nm(enm 1)

EI‘
=41+ (13)

rq*

—€
q {
Saz}a“

Here a=x, y,z; 1I<r<Nand 1< g < M; A,, is the area
of S,; P, p (k) is the Founer transform of P (x) with
1 D,/z sm(k  /2)
k, ) e ikxp =—" (14
El) =g [T deemon,(x) (14)

and g7'(k,,m) is the aB component of the dyadic
‘””(k 1) with

g (kom) = [deR,(2) [ de' Ry ()5 (ko 2,2)

(15)
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where /, is the domain of R (z).
By utilizing the symmetry properties of P (k) and
gag(k,,m) with respect to k,, (13) can be further reduced

to

Y ¥ Ya

B=x,y,zn=1m=1

(Enm €)

2mie,

e Bk B (k)W ()
0

N M
= Z Z Z 6aﬂ8rn6qu

B=x,y,zn=1m=1

sﬁzjl nm

(16)

€

where

cosk, (x, = x,) 8% (k. m),
(o, 8) = (x,x),(y, ),
(9,2).(2,¥),(z,2)

isink (x, —x,) 8% (k.. n),
(o, 8) = (x,),(x,2),
(r,x),(z,x).

Waﬁnm(kx’ 7?) -

(17)
Equation (16) is a matrix equation of the form
N
B=x,y,zn=1m=1

where a=x, y,z; 1<r<N; and 1<¢q< M. The eigen-
value 5 can thus be obtained by setting the determinant of
the Z matrix in (18) to zero.' Hence we have

det{Z(w,n)] = (19)

To solve the integral equation (9) for twn symmetrical

dielectric strip waveguides, we choose the same set of pulse

basis functions as in (11) to represent the electric field on
the cross section S, as

N oM

. X X

B=x,y,zn=1m=1

Z"‘B af =90

rqg,nm™ nm

(18)

E (o) = afBP,(x)R,,(2),

ponS;. (20)
By symmetry, the electric field on the cross section S, can
be represented as

N M

Y, X X el B (-

B=x,y,zn=1m=1

E,(p)= - x)R,(z),

ponsS, (21)

where the subscript ¢ in ISB designates the even mode
when £ =e and the odd mode when £ = 0. The definition
of If is
]B={ L (&B)=(0.x),(e, 7). (e, 2)
3
-1,

(&.8) = (ex).(0, ). (0,2). 2
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Fig. 3. The propagation constant for the E; mode on the optical rib waveguide: f=30.0 GHz, t;=0.8A,, t;;="0.7A,,
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For an even (odd) mode, a magnetic (electric) wall can be
put at x = 0 without affecting the field distributions.
Substituting (20) and (21) into (9) for p on S;, we have

€
S
€ BZ]

5oy f( )

x,y,cn=1m

Y Y T abgr(xR, ()1

B=x,y,zn=1m=1

_i
. .“oﬁ=

ff dp’| P, (x )+1ﬁp( )| R, ()

n "

p on S;.
(23)

Due to the symmetry of the structure, only the electric
fields on S| need to be tested when applying Galerkin’s
method. Taking the inner product of aP,(x)R(z) with
(23) and utilizing the symmetry properties with respect to
k., we have

o0 - ~
’ ./:_ dkx e:kr(x—x )gll(kx’ 2z, Z,)'Ba

> Z Z” (€0 — €1)

B=x,v.2n=1m=1

: fo “dk B

2miw’p,

(k) B, (kYWD (K \m)

where a=x, y,z; 1<r<

<N and 1< g< M; and
Wbk, m)

[coskx(x, —x,)+If cosk, (x,+ xn)]gg’”(kx, n),

(a,8) = (x,x),(»,y),(»,2),(2,¥).(2, 2)
i[sinkx(x,—xn)+ Ifsink, (x,+ x,,)]g”;’,'g"(kx,ﬂl

(a7B) = (X, y)7(x’z)a(yrx)v(z’x)'
(25)

Equation (24) is a matrix equation, and the eigenvalue 75
can be obtained by setting the determinant of the matrix
to zero.

IV. RESULTS AND DISCUSSIONS

In this section, three different dielectric strip waveguides
are investigated. They are the optical rib waveguide, the
strip dielectric guide, and the insulated image guide as
shown in Fig. 2. The central region of each structure is
denoted as region 1, and the background region is denoted
as region II.

In Fig. 3, we present the results for an optical rib
waveguide. In this case, the rib portion in region I is
chosen as the cross section of the strip which is embedded
in the background medium of a slab waveguide. We divide
the cross section of the strip into two segments along the z
direction, and eight to 24 segments along the x direction
depending on the width of the rib. Muller’s method {17] is
used to search for the roots of the determinantal equation
(19) with the initial guess provided by the EDC method
[8]. The CPU time spent to calculate the propagation
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constant at each frequency is about 7 min on a DEC VAX
station 3500.

The imaginary part of the propagation constant for the
TM-like Ef, mode is shown as a function of the rib width.
The leakage and cancellation phenomena are observed and
compared with those in [1]-[3]. The results calculated by
using our method show good agreement with those ob-
tained by the mode-matching technique [3]. Here the effec-
tive refractive index is defined as

1,

Ao = 7
eff

kO

where 7, is the real part of the propagation constant 7.

The wave modes of the dielectric waveguides are hybrid
modes in nature. In our notation, they are called E;,
modes (TE-like) when the TE, portion is larger than the
TM, portion and are called E,, modes (TM-like) when
the TE_ portion is less than the TM, portion.

In Fig. 4(a). we present the effective refractive index 7
for the E;; and Ej, modes as a function of the thickness
in region I of an optical rib waveguide with the rib width
as parameter. The effective refractive indexes for the sur-
face wave modes on region I and region 1I as if they were
of infinite extent are also displayed in the figure.

The effective refractive index of the TE-like mode Efj is
greater than that of the TM{ mode. Therefore, the k, for
the TMY mode is imaginary because k2= (n?—nk)ks;
and no surface wave modes are excited to incur leakage.
Here n, is the effective refractive index of the TM§ mode.
Meanwhile, the effective refractive index of the TM-like
mode E7, is smaller than that of the TE§' mode for certain
values of 7;. In that case, n is complex with a positive
imaginary part, and k, is complex with a negative imagi-
nary part because the separation relation for the TE{
mode implies that n,5, = —kk,,. Here n=1,+in, and
k.=k, +ik,, withn,, n,, and k,, positive. Usually, 7, is
much less than 7,, and hence |k ;| is much less than k.

The presence of the real part of k, implies that the
excited surface wave mode propagates away from the
guiding strip with an exiting angle 8 = sin~" (k. /(n,k,))
with respect to the y axis, as was observed in [2].

The negative imaginary part of k, implies that the
magnitude of the exiting surface wave mode increases in
the x direction. This phenomenon can be explained as
follows: as the hybrid leaky mode is propagating along the
y direction, surface waves are excited in the background
medium, which propagate away from the guiding structure
with an exiting angle §. The magnitude of the hybrid mode
decreases along the y direction due to leakage; hence the
magnitude of the excited surface wave also decreases along
the y direction. If we observe the field along the x direc-
tion (y =const), the surface wave at large value of x is
excited from the propagating wave along the guide having
larger magnitude than that which excites the surface wave
at the small value of x.

To predict the occurrence of leakage, let us consider the
case of w =2\, in Fig. 4. When the thickness ¢, is smaller
than that at point 7, the leakage occurs; when the thick-
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Fig. 4. (a) The effective refractive index for the modes on the optical

rib waveguide: f =30.0 GHz, t;; = 0.7A,, €, =2.8224¢. ¢, = 2.1904¢,,
¢, =¢,. (b) The imaginary part of the propagation constant for the
modes on the optical rib waveguide: f=30.0 GHz, #;,=0.7A,, ¢, =
2.8224¢,, €, = 2.1904¢,, €, = €.

ness is larger than that at point 7, the leakage vanishes.
This figure not only indicates which modes leak and which
do not; it also shows the range of geometrical and electri-
cal parameters governing this phenomenon. Note that the
leakage with w=6X, is smaller than that with w=2X,
and larger than that with w = 4A,,. This is consistent with
the results in Fig. 3.

In Fig. 5, we present the propagation constants for the
E}, and Ef modes on an insulated image guide. The
effective refractive indexes of the surface wave modes on
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Fig. 5. (a) The effective refractive index for the modes on the insulated
image guide: f =30.0 GHz, r;; =0.38X, €, = 2.62¢,, €, = 2.55¢y, €, =
€. (b) The imaginary part of the propagation constant for the modes
on the insulated image guide: f=30.0 GHz, r;; = 0.38),, €, = 2.62¢,,
€, =2.55¢,, €, =€,

region I and region II are also displayed for reference. For
the E7 mode, no surface waves are excited in region II
On the other hand, for the Ej mode, TMY mode is
excited to incur leakage.

From Figs. 4 and 5, it is clear that if the lowest order
TE-like mode leaks, the lowest order TM-like mode does
not leak; and vice versa.

In Fig. 6, we present the dispersion relation for three
TM-like modes: Ef,, Ef, and Ej, on a strip dielectric
guide. The dispersion relations of the first five slab wave-
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Fig. 6. (a) The effective refractive index for the TM-like modes on the
strip dielectric guide: 7;=0.82 cm, #;=0.5 cm, w=0.65 cm, ¢, =
2.55¢,, €, = 2.62¢,, €, = €. (b) The imaginary part of the propagation
constant for the TM-like modes on the sirip dielectric guide: #; =0.82
cm, f;;=0.5 cm, w=0.65 cm, €, =2.55¢,, ¢, = 2.62¢y, €, =¢.

guide modes on region II are also displayed for reference.
The effective refractive index of the Efj mode is larger
than that of any slab waveguide mode; hence no leakage is
expected. For the EZ and the E modes, both the TM{
and TE{I surface wave modes are excited, and leakage is
observed as the imaginary part of the propagation constant
shown in Fig. 6(b).

In Fig. 7, we present the dispersion relation for two
TE-like modes: the Ej{ and the Ef modes on a strip
dielectric guide. The dispersion relations of the first five
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Fig. 7. (a) The effective refractive index for the TE-like modes on the
strip dielectric guide: ;=082 cm, 7; =05 cm, w=0.65 cm, ¢, =
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cm, ;=05 cm, w=0.65 cm, €= 2.55¢, €= 2.62¢q, €, = €.

slab waveguide modes on region II are also displayed for
reference. The effective refractive index of the E5 mode is
smaller than that of the TM{ mode; hence the E; mode
is a leaky mode. For the Ej5 mode, both the TM{ and the
TE]' mode are excited, and leakage is observed as the
imaginary part of the propagation constant shown in Fig.
7(b). Thus, the E;5 mode couples to the TM{ mode, which
has an opposite polarization as was observed by Peng and
Oilner [1], [2]. On the other hand, the Ef,, the EJ,, and the
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Fig. 8. The effective refractive index for the Ef; modes on two ideatical
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E{, mode couple to both the TM{' and the TE{' mocle in
the background medium. Hence, as the lowest order leaky
mode couples to the surface wave mode of opposite polar-
ization, the higher order leaky modes may couple to the
surface wave modes of both polarizations. This was also
observed by Ogusu [3]. The same conclusions can als> be
drawn for the insulated image guide.

From Figs. 6 and 7, it is observed that the Ef is a
nonleaky mode, but the EJY is a leaky mode. This verifies
the conclusions we drew from Figs. 4 and 5 that if the
lowest TE-like (TM-like) mode is leaky, the lowest TM-like
(TE-like) mode is nonleaky.

Next, we consider the coupling of two symmetrical
dielectric strip waveguides. In Fig. 8, we show the effe:tive
refractive index of the Ej, mode for two identical strip
dielectric guides as a function of separation s. The effec-
tive refractive index of the even and odd modes tends to be
degenerate as the separation increases, and no leakage is
observed. Since the separation is large, the field distiibu-
tion on each strip is the same as if the other strip ‘were
absent. For the corresponding single-strip case shown in
Fig. 6, the Ef, mode is a nonleaky mode, which implies
that no surface wave modes are excited in the background
region. As the separation is reduced, there are still no
surface wave modes excited. ‘

In Fig. 9, we present the propagation constant of the: EJ}
mode for two symmetrical strip dielectric guides. The, Efj
mode on the corresponding single-strip dielectric guidf% isa
leaky mode, as shown in Fig. 7. The effective refractive
index of the even and odd modes tends to be degenerate as
the separation increases, but a small oscillatory behavior is
observed when the separation s is larger than 2.6 cm. As
for the imaginary part of the propagation constant, vzhen
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Fig. 9. (a) The effective refractive index for the E§ modes on two

identical strip dielectric guides: f=40.0 GHz, ;=082 cm, ¢t;; =0.5
cm, w=0.65 cm, €, =2.55¢,, ¢, =2.62¢,, € =¢€;. (b) The imaginary
part of the propagation constant for the E;; modes on two identical
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0.65 cm, €, = 2.55¢, €, = 2.62¢, €, =¢,.

the even mode has a maximum, the odd mode has a null;
and vice versa.

In Fig. 10, the propagation constant of the Ef, mode is
presented. The effective refractive index of both the even
and the odd mode displays an oscillatory behavior. Where
the even mode has a maximum, the odd mode has a
minimum; the vice versa.
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Fig. 10. (a) The effective refractive index for the Ef, modes on two
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part of the propagation constant for the Ef, modes on two identical
strip dielectric guides: f=138.67 GHz, #=0.82 cm. #;=0.5 cm,
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This behavior can be qualitatively explained by the
following approximate formula for the propagation con-
stants derived from the coupled wave equations [18]}:

Cyidn, A =~ [ dpde(p)ErE
n.=nt A, "==gp J) O (p)ErE,

where 7 is the propagation constant of the wave mode in
the absence of the other waveguide; %, are the propaga-
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tion constants of the coupled modes when the two wave-
guides are both present; E, is the electric field due to
waveguide i in the absence of the other guide, where
i=1,2; and P is the power guided by waveguide 1 alone.

For the nonleaky modes, the electric fields decay away
from the central regions. Hence the overlapping integral
decreases as the separation increases. For the leaky modes,
the electric fields outside of the central regions are the
superposition of an evanescent wave and the propagating
surface waves. If the propagating wave portion is strong
enough, it will make the overlapping integral change sign
when the separation is changed; and the overlapping inte-
gral sustains even at large separation.

For two symmetrical dielectric strip guides, the overall
leakage is due to the excitation of the surface wave modes
in the background medium by both guides. At certain
separation when the even mode has a maximum leakage, it
implies that the surface wave modes excited by each wave-
guide add in phase. For the odd mode at the same separa-
tion, these surface wave modes add out of phase due to the
definition of the even and odd modes; hence the cancella-
tion effect is observed as a null in the imaginary part of
the propagation constant. Similarly, if the odd mode has a
maximum leakage at a certain separation, the even mode
shows a cancellation effect.

The small oscillation in Fig. 9(a), however, does not
contradict the aforementioned explanation because the
leakage loss is almost two orders smaller than that of the
Ef, mode; hence the contribution of the propagating sur-
face wave to the overlapping integral is negligibly small.

In Fig. 11, we show the effective refractive index for the
E;; modes on two identical insulated image guides. The
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Fig. 12. (a) The effective refractive index for the Ejj modes on two
identical insulated image guides: f=40.0 GHz, 1;=0.82 cm, ;=035
cm, w=0.65 cm, €, =2.62¢,, €, =2.55¢,, €, = €. (b) The imaginary
part of the propagation constant for the EY modes on two identical
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w=0.65 cm, €, =2.62¢,, €= 2.55¢), €, = €.

even and odd modes tend to be degenerate when the
separation is increased. The Ef; modes are nonleaky modes
as the corresponding Ef; mode on the single insulated
image guide. In Fig. 12, we show the propagation constant
of the EJ modes on two identical insulated image guides.
The effective refractive index of the even and odd modes
tends to be degenerate, and the imaginary part displays
maxima and nulls alternatively.
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V. CONCLUSIONS

The guidance and leakage properties of single and cou-
pled dielectric strip waveguides are analyzed using a dyadic
Green’s function and integral equation formulation.
Galerkin’s method is used to solve the integral equation
for the dispersion relation. A method to predict the occur-
rence of leakage is proposed. The leakage occurs when the
effective refractive index is smaller than those of the
surface wave modes in the background medium. For the
coupled dielectric strip waveguides, the dispersion rela-
tions of the even and odd leaky modes are investigated.
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